# HYDRAULIC CONCERNS 2021 AND 2022

Jon Hendrickson

Regional Technical Specialist Mississippi Valley Division

Hydraulic Engineer St. Paul District

February 2022









#### MINNESOTA RIVER





| Decade    | Bankful Flooding<br>Events |
|-----------|----------------------------|
| 1930-1939 | 0                          |
| 1940-1949 | 1                          |
| 1950-1959 | 3                          |
| 1960-1969 | 5                          |
| 1970-1979 | 2                          |
| 1980-1989 | 5                          |
| 1990-1999 | 9                          |
| 2000-2009 | 6                          |
| 2010-2019 | 18                         |

- There is a statistically significant trend of increasing discharge from 1943 to 2020
- Average Discharge at Jordan
  - 1943 to 1980 = 3770 cfs
  - 1981 to 2020 = 7510 cfs (double the 1943 to 1980 ave.)
- Discharge in 2016, 2017, 2018, 2019, 2020 = 9360, 11,000,15520, 23550, 9370 cfs
- The number of bankfull flooding events (Q > 26,000 cfs) has increased in the 2010s (see table)
- 2011 to 2020 is wettest decade on record





#### **CHIPPEWA RIVER**







### **MISSISSIPPI RIVER**





Average Calendar Year Discharge at Winona

1943 to 1980 = 28,950 cfs

1981 to 2020 = 37,820 cfs (30 % increase)



2016, 2017, 2018, 2019, 2020 = 48,700, 47,960, 48,900, 71,520, 47,850 cfs 2010 to 2020 is wettest decade on record





# WATER EXCHANGE

In this example, the water exchange ratio between the channel and the backwater is

 $(Q_2 + Q_3)/Q_{dam}$  where Q = river flow

Expressed as a ratio or percentage









# WATER EXCHANGE – A SURROGATE FOR GEOMORPHIC CHANGE



















#### **Change in Water Exchange Ratio:**

- Shifted dredging downstream
- Increased outdraft at LD 7







Mormon Slough and raking care or reopies

Water exchange at Mormon Slough is increasing.

Is this causing point bar to encroach further in the channel?

Solutions?







# Water Exchange Rates Quantify Geomorphic Change And Response to Projects















# BACKWATER SEDIMENT SINKS ARE DECREASING



Change in Water Exchange Ratio (WER) Backwaters in Geomorphic Reach 3 for the Discharge Exceeded 25% of the Time Annually 1980-1990s time period to 2007-2018 time period

WER =  $(\sum Q_{\text{side channel}}/Q_{\text{total}})$ 





Data processing funded by UMRR Science in Support of Management



# SEDIMENT MEASUREMENTS CHIPPEWA RIVER AT DURAND AND PEPIN



# District/Other USACE PDT Members

St. Paul – Bryan Peterson, Steve Tapp, Dan Cottrell, Jon Hendrickson, Alex Nelson

**ERDC – David Abraham, William Butler** 

# Leveraging/Collaborative Opportunities

- 1. 2017 2020 Collect data, calibrate methods & equipment
- 2. 2020 Scientific Investigations Report, USGS
- 3. 2021 continued monitoring
- **4. USACE Navigation and RSM funding**

#### Stakeholders/Partners

Joel Groten, Jeff Ziegeweid, Will Lund, USGS Minn.

Dave Dean, USGS Grand Canyon Research Center

Dan Buscombe, Northern Arizona State University

Faith Fitzpatrick, Joe Shuler, USGS Wisc.





#### **Minnesota River Surrogate Metric: Acoustic Backscatter**





and Taking Care of People!

Groten, J.T., Ellison, C.A., and Hendrickson, J.S., Suspended-Sediment Concentrations, Bedload, Annual Sediment Loads, Particle-Sizes, and Surrogate Measurements for Selected Sites in the Lower Minnesota River, 2011 through 2014: U.S. Geological Survey Scientific Investigations Report 2016–5174, 29 p.

#### Data indicates:

- Minnesota River Sand Load is 250,000 yd3/yr.
- Minn. River dredging is 21,000 yd3/yr or 8.4% of total sand load.



## **2022 EFFORTS**



- > Secondary channel measurements offer the best indicator of the complex geomorphic changes that are occurring.
- > Chippewa River sediment monitoring will continue.
- Minnesota River sediment monitoring?? Gaging platform was destroyed in 2019 flood. Switch to Jordan, Minn. gage.
- Considering adding a Mississippi River sediment gaging station near St. Paul





# **DISCUSSION?**



18

# Questions?

# Estimates of Daily Water Exchange







# WATER EXCHANGE RATIO, GEOMORPHIC REACH



Total Water Exchange Ratio (WER) for Navigation Pools in Geomorphic Reach 3 for the Discharge Exceeded 25% of the Time Annually

WER = 
$$(\sum Q_{backwater}/Q_{total})$$







# **SEDIMENT SINKS**

- > Secondary channel measurements at several sites indicate that flow to backwaters decreases as sediment deltas expand.
- Pool 7 is Probably Most Significant Example to Date
  - > Outdraft
  - > Shift in Dredging
  - ➢ Greater sand loads to Pool 8??
- Delta expansion is occurring in many backwaters



Hydrogeomorphic units

Rogala, USGS



